Scrum Gathering

March 17, 2009

What do we do next?
Or: What colour is your backlog?

Philippe Kruchten
Scrum Gathering
Orlando, March 16-20, 2009

Philippe Kruchten, ph.o., peng., csop

Professor of Software Engineering
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca

+1 604 827-5654

Founder and president

Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com

+1 604 418-2006

Copyright © 2009 Philippe Kruchten

Scrum Gathering

March 17, 2009

* Context

* Software development
* Backlog

e Time-box

* Features &Value

e Work & Cost

* |nvisible features

* Dependencies

* Release and budget

* Dollars, or points & utils

X@ Outline

Estimation
Buffers
Defects
Technical debt
Constraints

Time and depreciation

Tool support
Colours

Research agenda
Recommendations

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

www._dilbért.com scotindoma®aol.com

THAT MEANS NO MORE
PLANNING AND MO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAINING.

I'™ GLAD
IT HAS A WAS YOUR
NAME. TRAIMING.

#3407 ©2007 Scott Adamae, ing./Dist. by UFS, inc.

© Scott Adams, Inc./Dist. by UFS, Inc.

Copyright © 2009 Philippe Kruchten

Scrum Gathering March 17, 2009

Context

e Research on modern software development
practices

» Software project management

* “Evidence-based software-engineering”
e Old stuff in new clothes ?

* |ntegration

* Financial support from Scrum Alliance

- A Conceptual Model of

Software Development

4 key concepts, 3 key attributes

" [ntent

= Product " Time
= \Work -

. = Risk

Copyright © 2009 Philippe Kruchten 3

Scrum Gathering March 17, 2009

Intent, Work, Product
realize >
Intent Product
< represent
\ 4 .
broduce A |implement
v drive
> isAllocatedTo
Work People
execute >

Adding Time, Quality & Risk
Intent Product
Time Time
Quality Quiality
Risk Risk
Work People
Time Time
Quality Quiality
Risk Risk

Copyright © 2009 Philippe Kruchten 4

Scrum Gathering March 17, 2009

Project environment, customer, end-users,
competition, legacy, business

Wishes, needs, Delivered
constraints Defects, Product
Enhancements

Legal and Regulatory Intent Product
constraints Time Time
_> Quality Quality
Risk Risk
Work People
Time Time Education,
Quality Quality Experience
Risk Risk B
Technologies 9
Project:
.

Tension between Intent and Product

Intent

oV

Product

oT

10

Copyright © 2009 Philippe Kruchten 5

Scrum Gathering March 17, 2009

lterations

11

Backlog

DAILY SCRUM
MEETING

POTENTIALLY
PRODUCT SPRINT ™ SHIPPABLE
BackLOG BACkLOG PrRODUCT
INCREMENT

2-4 WEEKS

9 3008, CGoa~ SOFTEART

Copyright © 2009 Philippe Kruchten 6

Scrum Gathering March 17, 2009

The Backlog

4 I
I—
Feature Requests | [N f'l ﬂb
— L4488

Priority

Sprint Planning

>

Feature Requests

Priority

Copyright © 2009 Philippe Kruchten 7

Scrum Gathering

March 17, 2009

Painting your backlog

Architecture
infrastructure

Technical
Debt

15

Time-box

16

Copyright © 2009 Philippe Kruchten

Scrum Gathering

March 17, 2009

Time-box
A
E Work (=Cost)
(Vs
v
<+ >
Time §
Time-box

better than

Brooks, Mythical Man-Month,1975
Boehm, COCOMO, 1981

18

Copyright © 2009 Philippe Kruchten

Scrum Gathering

March 17, 2009

Time-boxes: Releases

Release 1 R2 R3 R4

Time

19

Time-boxes: Iterations (sprints)

Release N

ITERATION 1

Time

20

Copyright © 2009 Philippe Kruchten

10

Scrum Gathering

March 17, 2009

Features

Intezqt

Features

Copyright © 2009 Philippe Kruchten

11

Scrum Gathering

March 17, 2009

)
] Features

Rn

23

Work and Cost

e How much work is associated to a feature?

* Work is strongly related to cost in software
development (a human-intensive activity)

e Overall budget is roughly the size of the time-
box(es)

e Time-box = budget
* Features must fit in budget
* Q: How do we select what goes in the box?

24

Copyright © 2009 Philippe Kruchten

12

Scrum Gathering

March 17, 2009

Features

,?

Rn

Features & Value

26

Copyright © 2009 Philippe Kruchten

13

Scrum Gathering

March 17, 2009

Maximizing value

Highest value first
Ignore time

o g
N

=

27

Value = Cost?

Only for simplest cases

28

Copyright © 2009 Philippe Kruchten

14

Scrum Gathering March 17, 2009

Value /= Cost

Cost

Value

Value and Cost

e Value: to the business (the users, the
customers, the public, etc.)

* Cost: to design, develop, manufacture, deploy,
maintain

e Simple system, stable architecture, many small
features:

— Statistically value aligns to cost
e Large, complex, novel systems ?

30

Copyright © 2009 Philippe Kruchten 15

Scrum Gathering

4 Value

\ Cost

Intent Product
Time Time
Quality Quality
K Risk Risk
/ Work People
Time Time
Quality Quality
Risk Risk

the resources used to
produce them

Cost

Efficiency vs. Effectiveness

Value

Efficiency Effectiveness

* relationship between the * relationship between the
output in terms of goods, intended impact and the
services or other results and actual impact of an activity

32

Copyright © 2009 Philippe Kruchten

March 17, 2009

16

Scrum Gathering

March 17, 2009

- Earned-Value System ?

25

20

Time Mow

Wariance

o =

Cost I
Varianee Schedule

Scheduled
Completion
Date

EALC

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 15 19 20 21 22 23 24 25

Time

33

- “Spent-Cost” System

25

20

Time Mow

Cost I
Varianee Schedule

Warianee

[=

L

12 % 4 05 B T & 9 10111 Actua|COSTOfW
Budgeted COSTO

\Budgeted cosTo

Scheduled
Completion
Date
EALC
/_——

ork Performed
§ Work Scheduled
§ Work Performed

Copyright © 2009 Philippe Kruchten

17

Scrum Gathering March 17, 2009

Invisible Features

35

Invisible Features

Architecture

Infrastructure

Common elements

Libraries
e Reuse

36

Copyright © 2009 Philippe Kruchten 18

Scrum Gathering March 17, 2009

Features

Dependencies

Copyright © 2009 Philippe Kruchten 19

Scrum Gathering March 17, 2009

Release Planning

e Time-box = budget
e Fill the time-box with a combination of visible
and invisible features

* ... while maximizing value

* Product manager: maximize value (green
stuff)

* Project manager: maximize budget utilization
* Techie: maximize the fun stuff (yellow) ?

39

- Units of Cost and Value

Value in Dollars ?

— Increases confusion value vs. cost
— Very hard to define

Priority

— High, medium, low

— MoSCoW

Relative index

util

Matches “points” for cost

Copyright © 2009 Philippe Kruchten 20

Scrum Gathering

March 17, 2009

Utils & Points
e Value e Cost = effort
— Measured in Utils — Measured in Points

Bass et al 2003
Rick Kazman, SEI

Rev. $$$ 5 Dev. $$5$
> utils 2. points

Research: Value “Flow down”

e Heuristics to allocate value to invisible
features

e Assign value to visible features (utils)

e “Borrow” value from visible features and
allocate to invisible features, using
dependencies

» Keep total value constant

e Goal: using value and dependencies to
sequence development

Copyright © 2009 Philippe Kruchten

21

Scrum Gathering March 17, 2009

Points (cost) and Utils (value)

47

Points (cost) and Utils (value)

‘Qﬁ‘/‘@%\‘

Copyright © 2009 Philippe Kruchten 22

Scrum Gathering March 17, 2009

Points (cost) and Utils (value)

.ﬂf‘/‘. \o<t\o

Points (cost) and Utils (value)

V=

2L &2

Copyright © 2009 Philippe Kruchten 23

Scrum Gathering March 17, 2009

Points (cost) and Utils (value)

A

.R%./‘. \0<3\Q

Heuristics?

* Value of invisible feature = Max (value of all
dependents)

* Value of invisible feature = Max + f(number of
dependents)

* Value of invisible feature = total value
achievable if implementing it — total value
achievable without implementing it

(Not there yet)

54

Copyright © 2009 Philippe Kruchten 24

Scrum Gathering

March 17, 2009

More on value & cost

CBAM = Cost Benefit Analysis Method
— Chap 12 in Bass, Clements, Kazman 2003
IMF: Incremental Funding Method

— Denne & Cleland-Huang, 2004

— Software by numbers

Analytic Hierarchy Process (AHP) Saaty, 1990

Evolve* - Hybrid
— Gunther Ruhe & D. Greer 2003, etc...

IMF: Incremental Funding Method

e MMF = Minimum Marketable Features

e AE = Architectural elements

* Cost

* MMF depends on AE

e Time and NPV = Net Present Value

e Strands = Sequences of dependent MMFs
* Heuristic

Copyright © 2009 Philippe Kruchten

25

Scrum Gathering

March 17, 2009

What colour is your backlog?

(so far)

57

Features

58

Copyright © 2009 Philippe Kruchten

26

Scrum Gathering March 17, 2009

] Visible &Invisible
Features

(]

)

y

59

- Estimation

e Cost estimation
e Work

* Estimate
— Ideal case?
* Things go wrong
— Worse case?

* > all worse cases = impossible implementation

60

Copyright © 2009 Philippe Kruchten 27

Scrum Gathering

March 17, 2009

Buffers

E. Goldratt: Theory of constraints

D. Anderson

Buffer: unallocated effort (work)

Shared by all staff members and all explicit
work

61

Time-box

62

Copyright © 2009 Philippe Kruchten

28

Scrum Gathering March 17, 2009

Time-box with Buffer

63

[]
-- Defects

» Defect = Feature with negative value
 Fix (defect) has a positive cost (work)

* Time/place of discovery
— Inside development (in-house, in process)

— Outside development (out-house?) in a released
product

64

Copyright © 2009 Philippe Kruchten 29

Scrum Gathering

March 17, 2009

Buffer for in-process defect

4

65

Perfect product

Defect Value

.-

Imperfect product Defect

66

Copyright © 2009 Philippe Kruchten

30

Scrum Gathering March 17, 2009

Fixing a Defect

Defect have both value and cost

Value of fixing a defect = -Value of the defect

Cost of fixing a defect (estimated)

Defects have dependencies
— Defect fix depend on invisible feature
— Visible feature depending on a fix

67

What colour is your backlog?

(so far)

68

Copyright © 2009 Philippe Kruchten 31

Scrum Gathering

March 17, 2009

] Visible and Invisible

Features

69

=

Visible & Invisible

Features + Defects fixing

70

Copyright © 2009 Philippe Kruchten

32

Scrum Gathering

March 17, 2009

[.
-- Technical Debt

Concept introduced by Ward Cunningham
Often mentioned, rarely studied

All experienced SW developer “feel” it.
Drag long-lived projects and products down

Cunningham, OOPSLA 1992 -

Technical Debt (S. McConnell)

Implemented features (visible and invisible) =
assets = non-debt

Type 1: unintentional, non-strategic; poor design
decisions, poor coding

Type 2: intentional and strategic: optimize for the
present, not for the future.
— 2.A short-term: paid off quickly (refactorings, etc.)

* Large chunks: easy to track
¢ Many small bits: cannot track

— 2.B long-term

McConnell 2007

72

Copyright © 2009 Philippe Kruchten

33

Scrum Gathering

March 17, 2009

Technical Debt (1)

$15 s16 (PR s18
—
S5 S3

$20 $19 $18
Technical Debt (2)
12 B 12 B 12 Bk

(ass (b Js3

D & ENs s

$25 $27

s I

$28

74

Copyright © 2009 Philippe Kruchten

34

Scrum Gathering

March 17, 2009

Technical Debt (3)

75

Technical Debt

Defect = Visible feature with negative value

Technical debt = Invisible “feature” with
negative value

Cost of fixing
Value of repaying technical debt

76

Copyright © 2009 Philippe Kruchten

35

Scrum Gathering

March 17, 2009

Interests

* In presence of technical debt
* Cost of adding new feature higher

e When repaying (fixing), additional cost for
retrofitting already implemented features

e Technical debt not repaid => lead to increased
cost, forever

e Cost of fixing increases

M. Fowler 77

Buffer for debt repayment

Debt
Defect Repayment

Estimate correction
Simple work uncertainties

78

Copyright © 2009 Philippe Kruchten

36

Scrum Gathering

March 17, 2009

Colours in a Product

Visible Invisible

Visible Hidden,
Feature architectural
feature

Positive
Value

Negative Technical
Value Debt

79

* YAGNI =You Ain’t Gonna Need It
— But when you do, it is technical debt

— Technical debt often is the accumulation of too
many YAGNI decisions

e Again the tension between the yellow stuff
and the green stuff.

80

Copyright © 2009 Philippe Kruchten

37

Scrum Gathering

March 17, 2009

What colour is your backlog?

(so far)

Visible & Invisible
Features + Defects fixing
+ Technical Debt payment

82

Copyright © 2009 Philippe Kruchten

38

Scrum Gathering

March 17, 2009

Time and depreciation

= o
7]
©
&) /
) /./
Time
Maximum
cash . AR _
injection ~ e - ~ | o A
needed
Invest- Repayment Profit
ment period period
period
Self- Break
funding even
point time
Denne 2004

Net Present Value

Net Present Value (NPV)

T
Cash Flow
NPV = § __Initial Cash

¢ Investment
t=1 (1+1)

t = Cash Flow Period
i = Interest Rate Assumption

84

Copyright © 2009 Philippe Kruchten

39

Scrum Gathering

March 17, 2009

In which release?

R1 R2 R3 R4
Time)

Value decreases
R1 R2 R3 R4
& &
Time .

Copyright © 2009 Philippe Kruchten

40

Scrum Gathering March 17, 2009

Technical debt: increase (?)

R1 R2 R3 R4
B =
>
Time

87

=- Tool support

 Strategic and tactical planning
— Release and iteration (sprint) level
e Uses:
— Value and cost
— Dependencies
— Depreciation
Integrate concept of buffers
Graphical Ul (hence the colors)
Add-on to existing scrum supporting tool
Needed for experimentation and validation

88

Copyright © 2009 Philippe Kruchten 41

Scrum Gathering March 17, 2009

=
L]

89

Copyright © 2009 Philippe Kruchten 42

Scrum Gathering March 17, 2009

Copyright © 2009 Philippe Kruchten 43

Scrum Gathering

March 17, 2009

Constraints

Use rules and heuristics to do an initial plan

Force (move) elements from one time-box to
another

Dependencies will “drag” things around

Proceed similarly at both levels:
— Release planning
— Sprint planning

Constraints (cont.)

e Dynamically re-arrange with new information
— Completed elements
— Actual costs (buffer consumption)
— New elements (in all colours)
— New estimates
— New dependencies
— De-scoping
— Additional scope
— Loss of resource

Copyright © 2009 Philippe Kruchten

44

Scrum Gathering

March 17, 2009

Ok
@%]Ei

oge

95

EXTREME PROGRAMMING

I CANT GIVE YOU
ALL OF THESE
FEATURES IN THE
FIRST VERSIONM.

OKAY, HERE'S A
STORY : YOU GIVE
ME ALL OF MY
FEATURES OR T'LL
RUIM YOUR LIFE.

AND EACH FEATURE
NEEDS TO HAVE
WHAT WE CALL A
“USER STORY."

scottadams @aal.com

ilrslad 82002 Bnited Pesture Syndicabs, Ins

www. dilbert.com

Copyright @ 28083 United Feature Syndicate, Inc.

96

Copyright © 2009 Philippe Kruchten

45

Scrum Gathering

March 17, 2009

Summary of Research Questions

Heuristic to allocate value to invisible features

Heuristics to define size of buffer in a time-box
1. For absorbing errors in estimations

2. For defect correction

3. For debt reduction

Definition of the “value” of technical debt
Impact of time on unpaid technical debt
Visual paradigms (for tool)

Supported by Scrum Alliance

Use of surfaces (software team room)
Support from NSERC? 97

SurfNet Research

Copyright © 2009 Philippe Kruchten

46

Scrum Gathering March 17, 2009

Suggestions for project management

» Separate the processes for estimation of cost
and value

e Avoid monetary value (points & utils)

* |Identify invisible features and make them
more visible to more stakeholders

e Allocate value to invisible feature

e Use nominal and worse case estimates for cost
(effort); create shared buffers

Suggestions (cont.)

* Make technical debt visible
— Large chunks (McConnell type 2)

e Assign some value to technical debt type 2.B
and include in backlog

* Allocate a buffer in a release time-box for debt
reduction for type 1 and 2.A

* Allocate a buffer in an iteration (sprint) time-
box for type 1 (systematic refactorings)

Copyright © 2009 Philippe Kruchten 47

Scrum Gathering

March 17, 2009

3 Kinds of Buffers

Debt
Repayment

Defect
Estimate correction
uncertainties

Straighforward work 01

Toward the 15t release

Copyright © 2009 Philippe Kruchten

48

Scrum Gathering March 17, 2009

A later release

Manage all colours in your backlog!

104

Copyright © 2009 Philippe Kruchten 49

Scrum Gathering

March 17, 2009

Suggestions (cont.)

* Manage all work together, not in separate
silos:
— new development,
— architectural or infrastructure work,
— defect fixing and
— debt reduction.

e Single tool...?

105

106

Copyright © 2009 Philippe Kruchten

50

Scrum Gathering March 17, 2009

Copyright © 2009 Philippe Kruchten 51

Scrum Gathering

March 17, 2009

109

110

Copyright © 2009 Philippe Kruchten

52

Scrum Gathering March 17, 2009

111

Architecture: Value and Cost

e Architecture has no (or little) externally visible
“customer value”

* |teration planning (backlog) is driven solely by
“customer value”

* YAGNI, BUFD, Metaphor...
* “Last responsible moment!” & Refactor!

* Ergo: architectural activities are not given proper
attention

* Ergo: large technical debts

113

Copyright © 2009 Philippe Kruchten 53

Scrum Gathering

March 17, 2009

Role of Architecture

Novel system
Gradual emergence of architecture

Validation of architecture with actual
functionality

Early enough to support development

Zipper model...
* Not just BUFD
* No YAGNI effect

114

Zipper: Weaving the functional and
architectural work items

Copyright © 2009 Philippe Kruchten

54

Scrum Gathering March 17, 2009

Questions?

116

References

= Agile Alliance (2001) Manifesto for Agile Software Development.
http://agilemanifesto.org/

= Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in
Practice (2nd ed.). Reading, MA: Addison-Wesley.

= Beck, K., & Fowler, M. (2001). Planning Extreme Programming. Boston:
Addison-Wesley.

= Boehm, B. and Lane, J.A. (2007) Using the incremental commitment model
to integrate system acquisition, system engineering, and software
engineering, University of Southern California, Los Angeles, September
2007.

= Boehm, B. & Ross, R. (1989) "Theory-W Software Project Management:
Principles and Examples." IEEE Transactions on Software Engineering 15
(4) 902-916.

= Cohn, M. (2006) Agile Estimating and Planning. Upper Saddle River, N.J.:
Prentice-Hall.

= Denne, M., & Cleland-Huang, J. (2004). Software by Numbers: Low-Risk,
High-Return Development, Prentice Hall.

@ 117

Copyright © 2009 Philippe Kruchten 55

Scrum Gathering

March 17, 2009

References (cont.)

= Denne, M., & Cleland-Huang, J. (2004). The Incremental Funding Method:
Data-Driven Software Development IEEE Software, 21(3), 39-47.

= Karlsson, J. & Ryan, K. (1997). A Cost-Value Approach for Prioritizing
Requirements, IEEE Software, 14 (5) 67-74.

= Kruchten, P. (2007). Voyage in the Agile Memeplex: Agility, Agilese, Agilitis,
Agilology. ACM Queue, 5(5), 38-44.

= McConnell, S. (20087) Notes on Technical Debt,
http://blogs.construx.com/blogs/stevemcc/archive/2007/11/01/technical-debt-
2.aspx

= Ruhe, G. and Ngo-The, A. (2004) Hybrid Intelligence in Software Release
Planning. International Journal of Hybrid Intelligent Systems, 1, pp 99-110.

= Saaty, T. (1990). How to make a decision: The analytic hierarchy process.
European journal of operational research, 48(1), 9-26.

= Wiegers, K. (1999). First Things First: Prioritizing Requirements. Software
Development Magazine, 7(9), 48-53.

Slides at philippe.kruchten.com/kruchten_backlog_colours.pdf

119

Copyright © 2009 Philippe Kruchten

56

